Deep Reinforcement Learning Based Routing in IP Media Broadcast Networks: Feasibility and Performance
نویسندگان
چکیده
The Media Broadcast industry has evolved from Serial Digital Interface (SDI) based infrastructures to IP networks. While video broadcast is well established in the data plane, use of networks transport media flows still poses challenges terms resource management and orchestration. SDN orchestration architectures have emerged that route a service across provider network. Several approaches multimedia flow routing been proposed context streaming applications over Internet. These range model linear optimization solutions high complexity simple shortest path heuristics with either static or dynamic link costs. More recently model-free methods such as Deep Reinforcement Learning (DRL) for Traffic Engineering scenario however specific requirements, services like Master Control Room operation Live broadcasting events, it rarely addressed literature. In this work we propose DRL method compare cost algorithms on Dijkstra paths. This our knowledge first follow approach infrastructures. algorithm designed considering specifications capabilities one leading orchestrators market considers more common Service Level Agreement requirements industry. Three different are implemented compared evaluate them using real network topology. results indicate applicable production scenarios achieves considerable performance gains when commonly used today.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement learning based routing in wireless mesh networks
This paper addresses the problem of efficient routing in backbone wireless mesh networks (WMNs) where each mesh router (MR) is equipped with multiple radio interfaces and a subset of nodes serve as gateways to the Internet. Most routing schemes have been designed to reduce routing costs by optimizing one metric, e.g., hop count and interference ratio. However, when considering these metrics tog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3182009